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Abstract.Among the many scientific advances to come from the study of nanoscience, the development of
ligand-targeted nanoparticles to eliminate solid tumors is predicted to have a major impact on human
health. There are many reports describing novel designs and testing of targeted nanoparticles to treat
cancer. While the principles of the technology are well demonstrated in controlled lab experiments, there
are still many hurdles to overcome for the science to mature into truly efficacious targeted nanoparticles
that join the arsenal of agents currently used to treat cancer in humans. One of these hurdles is
overcoming unwanted biodistribution to the liver while maximizing delivery to the tumor. This almost
certainly requires advances in both nanoparticle stealth technology and targeting. Currently, it continues
to be a challenge to control the loading of ligands onto polyethylene glycol (PEG) to achieve maximal
targeting. Nanoparticle cellular uptake and subcellular targeting of genes and siRNA also remain a
challenge. This review examines the types of ligands that have been most often used to target nanopar-
ticles to solid tumors. As the science matures over the coming decade, careful control over ligand
presentation on nanoparticles of precise size, shape, and charge will likely play a major role in achieving
success.
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INTRODUCTION

Nanoparticles, such as liposomes and gene delivery
polyplexes, are designed to carry drug or gene cargos and
maximize payload delivery to tumor cells. The size of nano-
particles restricts their ability to passively diffuse into organs
that lack fenestrated endothelial cells. The liver, spleen, and
bone marrow possess natural fenestrated endothelial cells that
allow nanoparticles of <100 nm to extravagate (1). Solid tu-
mors as well as other diseased tissues such as inflamed joints
possess an unnatural vasculature through which nanoparticles
of micrometer size traverse through leaky tight junctions in
the vascular endothelium and accumulate in the extracellular
space of the diseased tissue (2).

Successful nanoparticle delivery depends on optimal pas-
sive targeting to direct accumulation in the tumor and active
targeting to gain intracellular access (3). Passive targeting
takes advantage of the propensity for nanoparticles to selec-
tively accumulate approximately 10% of dose in a solid tumor
(4). Matsumara and Maeda first described tumors as tightly
packed with blood vessels yet also having a leaky vasculature,
which results in the “enhanced permeability and retention
effect” (EPR). They noted that molecules larger than 30–

45 kDa are retained within solid tumors while smaller mole-
cules are able to diffuse back into the blood stream (5,6).

To take advantage of the EPR effect, nanoparticles must
be biocompatible with the blood and must also avoid accumu-
lation in the liver and spleen. The charge on nanoparticles is a
key factor for achieving these attributes. Negatively and neu-
trally charged nanoparticles are much more biocompatible
compared to positively charged particles as a result of less
protein binding in the blood (7). Albumin is the most abun-
dant blood protein at a concentration of 50 mg/ml. Its overall
negative charge results in ionic binding to positively charged
nanoparticles resulting in aggregation, charge reversal, and
entrapment in the lung (8,9). However, blood proteins also
bind to all nanoparticles which can lead to accumulation of
ligands on negatively and neutrally charged nanoparticles that
influence their biodistribution (10).

In addition to blood protein binding, nanoparticle
biodistribution is strongly influenced by scavenger receptor
binding and internalization into Kupffer cells and fenestrated
endothelial cells of the liver (11–14). Scavenger receptors bind
negatively charged nanoparticles, accounting for the large
percent of the dose (50–80%) that is immediately captured
by the liver (12,15). Nearly all liposomes, polyplexes, and
nanoparticles are made biocompatible by attaching polyethyl-
ene glycol (PEG) (16–20). Covalent attachment of a surface
layer of PEG onto the nanoparticle masks the nanoparticle
charge. The length and density of the PEG attached to the
nanoparticles significantly influence the efficiency of charge
masking (21). If the polyplexes are positively charged, a PEG
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layer that partially blocks positive charge will not completely
block albumin binding but will minimize albumin-induced
aggregation (22,23). A primary goal of attaching PEG to
nanoparticles is to mask charge and minimize protein binding
to allow nanoparticles to evade scavenger receptor recogni-
tion. Under these conditions, nanoparticle accumulation in the
liver over time is approximately 10% of dose (24), which
allows the remainder of the dose to freely circulate. Since
the known family of scavenger receptors only binds anionic
molecules, cationic PEGylated polyplexes are presumed to
undergo charge reversal in the blood as a result of albumin
binding, leading to their recognition by scavenger receptors in
the liver (25).

While PEGylated nanoparticles are more biocompatible,
they are also more difficult to functionalize with ligands. Small
molecule ligands directly attached to nanoparticles are
masked by covalently attached PEG (26). This necessitates
the development of a bioconjugation strategy to attach the
ligand to the end of a PEG spacer, resulting in tethering of
ligands to the nanoparticle surface (26). Due to the flexibility
of PEG, this strategy does not guarantee proper ligand pre-
sentation, which may be buried in the PEG layer surrounding
the nanoparticle (Fig. 1). In addition to the uncertainties of
ligand presentation to allow receptor recognition, the attach-
ment of ligand to the ends of PEG is chemically challenging.
Most often, this requires the use of heterobifunctionalized
PEGs that possess unique terminal groups that react selective-
ly with a functional group on the ligand and the nanoparticle
surface. Approaches to achieve bioconjugation of ligands to
PEG on liposomes and other nanoparticles has been recently
reviewed (26). While it is most convenient to react a
heterobifunctionalized PEG with the nanoparticle and then
load the ligand onto the PEGylated nanoparticle in a second
reaction, it is also more difficult to chemically characterize the
assembled nanoparticle system, compared to preparing and
characterizing a PEG-ligand conjugate. The lack of careful
chemical characterization leads to undefined and heteroge-
neous ligand density that ultimately causes irreproducible
targeting results. However, attempts to directly label PEGs
with ligands prior to loading onto nanoparticles are also com-
plicated by the difficulty of chromatographically separating
labeled PEGs from unlabeled PEGs and uncertainties in the
mass spectral characterization of polydisperse ligand-modified

PEGs. These complications multiply as the PEG length is
increased, which is often an inevitable consequence of the
need to achieve a sufficient PEG layer to avoid scavenger
receptor binding. Even when performed with great care, mod-
ification of ligands with PEG can disrupt receptor recognition,
depending on the location of the functional group on the
ligand and the type of reactive group on PEG. Still, most
nanoparticle formulations are PEGylated and proper ligand
presentation is assumed.

Evading detect ion by scavenger receptors on
nonparenchymal cells in the liver is the first major obstacle
to achieve tumor targeting (27). However, the liver possesses a
second potential trap to sequester nanoparticles. The liver-
fenestrated endothelial cells allow extravagation of small
nanoparticles (<100 nm) into the space of Disse that sur-
rounds hepatocytes (28). The space of Disse is composed of
extracellular matrix proteins including collagen and proteo-
glycans. Compared to the saturable binding capacity of scav-
enger receptors on nonparenchymal cells, the space is very
large and difficult to saturate (15,29,30). Positively charged
PEGylated polyplexes that evade capture by scavenger recep-
tors on Kupffer cells and fenestrated endothelial cells bind
and accumulate in the space of Disse (25). Negatively and
neutrally charged nanoparticles that are sufficiently small
(<100) also cross the liver-fenestrated endothelial cells and
sample the space of Disse, but appear not to accumulate in
the liver most likely because of their lack of ionic binding to
extracellular matrix proteins (24,25). Some evidences suggest
a similar charge relationship exists for extravagated nanopar-
ticles binding ionically to the tumor extracellular matrix (31).

LIGAND PRESENTATION

The selection of a targeting ligand is primarily dictated by
the receptors present on the target cells. Not all receptors are
suitable for targeting nanoparticles. Cell surface receptors that
bind their ligand but do not internalize are generally inade-
quate for the delivery of poorly diffusible cargos such as DNA
and siRNA. Since nanoparticles are typically 50–100 nm in
diameter, receptors that undergo receptor-mediated endo-
cytosis through coated pits and recycle to the cell surface
are considered necessary because they are capable of
internalizing larger cargo. The receptor and ligand typical-
ly dissociate in endosomes, with the ligand continuing to
traffic to lysosomes. Disrupting the intracellular trafficking
by effecting endosomal lysis to release the cargo into the
cytosol is an important event for successful gene and
siRNA delivery (32).

In addition to endocytosis, receptors present in abun-
dance on target cells are an advantage toward achieving
in vivo efficacy. Some naturally occurring receptors are pres-
ent at 10 (6) per cell; however, this is rarely experienced on
cancer cells that most often upregulate or selectively express a
receptor in lower abundance. To achieve greater selectivity
over normal cells, some targeting antibodies are directed
against cancer cell surface molecules, such as mucines or
glycolipids. In addition to these considerations, ligands should
have high affinity (dissociation constant (Kd)=nM) for bind-
ing the cell surface receptors, although lower binding affinity
can be compensated through clustering as discussed below
(16,33). Extensive structure activity relationship (SAR)

Fig. 1. Ligand presentation on PEGylated nanoparticles. a The influ-
ence of PEG to mask surface charge. b Ligand presentation is masked
by 30 kDa PEG and by PEG folding. c A sufficiently short PEG
modified with ligand on the termini can result in exposed ligand. It
is essential to find the shortest PEG that masks nanoparticle charge to
maximize ligand exposure
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knowledge of the ligand is essential to successfully attach it to
PEG while maintaining its receptor binding affinity.

While developing targeted nanoparticle delivery systems,
it is advantageous to perform preliminary tests in vitro on
receptor expressing cells (34). Often, these may be cancer cell
lines that have been shown to express the receptor endoge-
nously. Alternatively, an appropriate cell can be derived from
a cancer cell line that lacks the receptor by genetical transfor-
mation to achieve stable expression of the receptor. Trans-
formed cell lines offer the advantage of direct comparison with
a nontransformed receptor cell line. A major disadvantage of
this approach is variability and unpredictability in the number
of receptors expressed. Also, expressed receptors may lose
their ability to endocytose ligands. In either case, it is impor-
tant to verify the presence of cell surface receptors which is
normally performed by fluorescence assisted cell sorting
(FACS) using a fluorescently labeled antibody. This verifica-
tion is important since subtle experimental parameters, such
as cell passage number, can influence the level of expression of
the cell surface receptors. When developing targeted nanopar-
ticles for in vitro binding or uptake assays, essential controls
must be taken into consideration which include the use of
receptor-blocking antibodies and blocking with excess ligand
or antagonists. Most in vitro assays also require the use of a
radiolabel or fluorophore to monitor nanoparticle binding to
receptors (34).

Clustering ligands on nanoparticles has a major benefit of
enhancing receptor binding affinity (Fig. 2). This well-known
phenomenon can amplify ligand affinity by several orders of
magnitude due to the simultaneous occupation of receptor
binding sites on the cell surface (35–41). The multivalent effect
also opens the possibility of incorporating two different li-
gands to increase affinity and selectivity for cells expressing
multiple target receptors. High binding affinity is essential to
achieve in vivo efficacy since circulating nanoparticles are
subject to strong shearing pressures in the vasculature (35,42).

The importance of a targeting ligand for nanoparticle
accumulation in solid tumor is dependent on the specific ap-
plication. Most studies conclude that targeting ligands do not
increase the percent of nanoparticle dose accumulated in solid
tumor, which is dictated by EPR, but targeting ligands do
increase nanoparticle binding and internalization into tumor
cells (Fig. 3) (43,44). For example, Wu et al. used tumor
xenografts to show an increase in tumor localization of (64)
Cu-labeled antibody fragments conjugated to DOTA when
containing a targeting ligand (45). Likewise, Hussain et al.
showed tritium-labeled PEGylated liposomes (110±10 nm)
containing an antiepithelial cell adhesion molecule antibody,
conjugated with a cysteine-maleimide linkage on the distal
end of PEG on stabilized liposomes, had the same
biodistribution and pharmacokinetics as nontargeted lipo-
somes (46). Similarly, Kirpotin et al. tracked (67) Ga- or
gold-loaded lipid nanoparticles (80–100 nm) targeted with
anti-HER2 antibodies, conjugated with terminal cysteine-
maleimide linkage on the end of PEG, and found a similar
biodistribution and pharmacokinetics between targeted and
controls (47). However, the nontargeted particles remained
in the tumor stroma while targeted particles were internalized
by the cells. In addition, Davis used positron emission tomog-
raphy (PET) and bioluminescent imaging to quantify the
biodistribution of cyclodextrin nanoparticles (90–125 nm,

~+10 mV) containing (64) Cu-labeled siRNA with or without
the transferrin ligand. Moreover, they determined that
targeted nanoparticles, where transferrin-carbohydrate was
attached to the distal end of PEG, showed equivalent uptake
in tumors as untargeted molecules due to the EPR effect, but
the targeted molecules were capable of internalization leading
to superior gene delivery and siRNA knockdown (44).

ANTIBODIES

Antibodies and FABs are some of the most selective and
potent targeting agents to deliver nanoparticles to tumor cells.
The vast subject of immunoliposomes targeting encapsulated
anticancer agents, DNA and siRNA, has been recently
reviewed and will only be touched on briefly for completeness
(2,34). As discussed earlier, the development of humanized
monoclonal antibodies and single-chain FABs to target nano-
particles is largely dependent on the type of cancer and the
antigenic epitope being targeted. The recent review by Pazko
and Senge is comprehensive in its coverage of this subject
(34). However, as described by Nobs et al., a major difficulty
still lies in developing reliable chemistry to attach antibodies
to liposomes and nanoparticles. Despite the commercial avail-
ability of an array of heterobifunctionalized PEGs of different
lengths and chemistry that allow a diversity of chemical

Fig. 2. Benefits of multivalent nanoparticles. Nanoparticles are sub-
jected to forces such as rotation and moment in the blood. A single
ligand can bind its receptor diminishing these forces slowly with each
interaction (a). Multivalent nanoparticles can be bound by multiple
receptors simultaneously leading to increased receptor-ligand interac-
tions. The exponential increase in affinity and increased interactions
caused by the multivalency of the nanoparticle increase the amount of
nanoparticles that remain bound and that consequently can be inter-
nalized (b)
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conjugation approaches, the low efficiency of attaching anti-
bodies to the surface of PEGylated nanoparticles and lipo-
somes continues to be a major challenge to this field (34).

APTAMERS

Aptamers are DNA or RNA sequences that fold into a
secondary structure that allow the evolution of high-affinity
targeting agents for cell surface receptors (4,48). The devel-
opment and use of aptamers has been extensively reviewed
by Cho et al. in 2011 and Song et al. in 2012 (49,50).
Aptamers have advantages over antibodies in that they
can be produced rapidly and are nonimmunogenic (51).
However, aptamers are rapidly cleared by renal filtration
and are degraded by nucleases if not modified with
protecting groups including: 2′-fluorine-substituted pyrimi-
dines, polyethylene glycol (PEG), 3′capping, and locking
nucleic acids (52). The first use of aptamers (AS1411,
Aptamera) in humans was a guanosine-rich oligonucleotide
that inhibits growth of tumors (53). Wilner et al. targeted
siRNA containing stable nucleic acid lipid particles
(SNALPS) to the transferrin receptor where the aptamer-
guided SNALPS bound to Jurkat T cells and were rapidly
internalized as shown via flow cytometry even when incu-
bated with endogenous levels of serum transferrin (54).
Other aptamer targets include the HER2 receptor in breast
cancer tissue, the tyrosine kinase receptor Axl and the
Muc1 receptor on cancer cells (55–57). Polyethylenimine
(58) polyplexes targeted with Muc-1 aptamers resulted in a
10-fold increase in gene expression over nontargeted
polyplexes and a twofold increase over PEI polyplexes
alone. In vivo results showed aptamer-targeted PEI
polyplexes achieved approximately threefold higher

expression in mice tumors compared to nontargeted
polyplexes (59).

TRANSFERRIN

Transferrin is an iron-binding beta-globulin found in plas-
ma that binds to transferrin receptors on the plasma mem-
brane of cells and transfers ferric ions (4,60). The receptor is
expressed in most human tissues, but is upregulated in tumor
tissue (4,60). Upon binding transferrin, transferrin receptors
are internalized and the ferric ions are released in the late
endosome at pH 6 and transported to the cytoplasm through
an unknown mechanism. The surface receptor is then recycled
back to the cell membrane. This mechanism and its use in drug
delivery were extensively reviewed in 2011 by Daniels et al.
(60). Weissleder’s lab designed a system utilizing cells
engineered to overexpress transferrin receptors in which up-
take of mono-crystalline iron oxide nanocompounds could be
imaged (61,62). Also, Davis et al. performed the first phase I
clinical trial by systemically administering siRNA directed
against the M2 subunit of ribonucleotide reductase to patients
with solid tumors using a transferrin-targeted PEGylated cy-
clodextrin-based polymer. Preclinical data showed decreased
RRM2 messenger RNA (mRNA) levels in tumor samples
(clinical trial NCT00689065) (63). Another phase I clinical
trial has begun in which transferrin receptors are targeted with
an antibody coupled to liposomes containing plasmid
encoding the tumor suppressor gene p53. Results thus far
confirm the safety of the liposomes and dose-dependent trans-
gene expression (64). Other uses of transferrin for targeted
gene transfer include coating herpes virus with transferrin-
DOTAP, cholesterol liposomes, and other studies with phage
λ particles coupled to holotransferrin (diferric transferrin)

Fig. 3. The EPR effect and targeting nanoparticles. Normal endothelial cells line the
vasculature forming a barrier that prevents nanoparticle entrance (a). However, tumors
form a leaky vasculature that allows small nanoparticles entrance and exit from the vascu-
lature to the extracellular space (b). Larger PEGylated nanoparticles gain access to the
extracellular space of the tumor and their larger size cause them to become trapped (c).
Targeted nanoparticles also gain entrance into the tumor through the EPR effect, but the
multivalent ligand receptor interactions result in cellular uptake of the nanoparticle where
the therapeutic cargo can be released
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which are capable of targeting green fluorescent protein
(GFP) to human 293T cells (65).

FOLATE TARGETING

Folate (vitamin B9) is transported into the cells via a
reduced folate carrier that functions as a bidirectional anion
transporter, which delivers folate across the plasma membrane
of cells in all tissues (66,67). Following ligand binding, folate
receptors (FRs) internalize via receptor-mediated endocytosis
and constitutively recycled back to the cell surface. Since
folate is an essential nutrient building block for the synthesis
of purines and pyrimidines, the FR is often upregulated in
malignant cells and each of the four receptor isoforms (alpha,
beta, gamma, and delta) can be differentially upregulated in
different cancer subsets (66–69).

Shiokawa et al. demonstrated attachment of folate-PEG
of varying PEG molecular weight to lipid emulsions resulted
in a ligand-dependent decrease in tumor volume in
xenografted mice (69). Lee et al. probed multivalent presen-
tation of folate by assembling oligonucleotide particles
(ONPs) that consist of six double-stranded DNA molecules
and six double-stranded siRNA molecules which form nano-
particles using the overhang hybridization method. SiRNA
gene knockdown required the proper display of a minimum
of three folate molecules. Biodistribution analysis indicated an
increase in fluorescently labeled ONPs when targeted with
folate (70). Polyamidoamine dendrimer conjugates of cyclo-
dextrin and folate-PEG were used to target siRNA to demon-
strate dose- and receptor-dependent knockdown in FR-
expressing cells versus non-FR-expressing cells (71). Adeno-
viral vectors coated with folate-PEI or folate-PEG demon-
strated enhanced gene delivery. Similarly, folate-targeted
cationic liposomes or nanolipoplexes have been recently pub-
lished (72–75).

There is strong evidence that inflammation is a contrib-
uting factor in the progression of cancer (20,76–80). Folate
receptor β (FRβ) has been shown to be upregulated in acti-
vated macrophages, present in inflammatory disease, but ab-
sent on other blood cells or quiescent macrophages. The
activation of macrophages to selectively internalize folate-
modified nanoparticles makes folate an attractive ligand for
targeting nanoparticles to treat inflammation (67). The link
between inflammation and the FR dates back to 1988 when
Furst et al. found that methotrexate was a FR antagonist with
anti-inflammatory effects (81–83). Folate has also been incor-
porated into nanoparticles encapsulating fluorescent dye
IR750 to image cites of inflammation (84). The capability for
folate modified nanoparticles to target malignant cells pose an
opportunity for a novel two-front treatment approach for
chemotherapeutics (85,86).

ANISAMIDE

Anisamide is a small molecule ligand that binds mem-
brane-bound sigma receptors. Sigma receptors are
overexpressed in different malignancies including melanoma,
non-small lung carcinoma, some breast tumors, and prostate
cancer (87,88). Huang’s group has extensively studied the
incorporation of anisamide into cancer targeting nanoparti-
cles. Liposome-protamine-heparin (LPH) PEG anisamide

nanopar t i c l e s were used to de l i ver the pept ide
EEEEpYFELV (EV) to block downstream phosphorylation
of EGFR in human H60 lung cancer cells (89). In another
example, anisamide was used to target lipid-calcium-phos-
phate nanoparticles to deliver siRNA to HDM2, c-myc, and
VEGF (90). Moreover, VEGF was used to co-dose siRNA
and gemcitabine (91). Anisamide liposome protamine mRNA
nanoparticles were also used to co-deliver mRNA for the
herpes simplex virus 1-thymidine kinase (HSV-tk) and ganci-
clovir (92). In all cases, in vitro data suggested improved
targeted uptake and expression in cancer cell lines as well as
increased cell toxicity. These results are confirmed in vivo
where anisamide-targeted nanoparticles demonstrated im-
proved biodistribution of nanoparticles to the tumor and de-
creased tumor volumes over nontargeted controls.
Experiments with co-dosed treatments of siRNA and antican-
cer agents led to synergistic effects over nontargeted or indi-
vidual treatments. Anisamide targeting was also used to target
chitosan-PEG-anisamide nanoparticles to A549 lung epitheli-
al cancer cells in order to deliver gemcitabine (87). The results
demonstrated a ligand-dependent increase in cell toxicity and
increased tumor uptake and decreased tumor volume in mice
xenograft models. Similarly, cyclodextrin-PEG-anisamide
nanoparticles targeting PC3 prostate tumor cells were used
to deliver anti-VEGF siRNA and exhibited 80% silencing of
luciferase and decreased tumor volume over nontargeted con-
trols (88).

PEPTIDE LIGANDS

Peptide-mediated targeting is an attractive approach due
to the diversity of target receptors that are upregulated on
cancer cells (4,93,94). The most common peptide used for
targeting is arginine-glycine-aspartic acid (RGD) (95). RGD
peptides bind integrins on the cell surface that affect cell
migration, growth, differentiation and apoptosis, in addition
to cell-cell interactions (18,96). Integrin αvβ3 that bind to
RGD peptides with high affinity is involved in intracellular
signaling and direct roles in tumor angiogenesis (97–100).
Cyclizing RGD peptides increases receptor binding affinity;
however, scrambling the peptide sequence or modifying the
amino acids removes all binding capability (96). Recent uses
of RGD peptides for treating cancer include conjugation of
PEGylated RGD peptides to gold nanoshells. These nanopar-
ticles targeted U87 glioblastoma cells with a 267-nM IC50. This
simultaneously allowed imaging of (64) Cu-labeled nanopar-
ticles in a rat tumor model and increased thermal necrosis of
tumors in mice (93). Most recently, cyclic RGD-targeted poly-
meric micelles loaded with the oxaliplatin parent drug (1,2-
diaminocyclohexane)platinum(II) (DACHPt) effectively
showed in vitro drug accumulation in a glioblastoma cell line
and produced a fivefold decrease in luminescent intensity in a
luciferase-expressing mouse brain tumor model (101). Other
recent uses of RGD peptides for nanoparticle targeting to
cancer are summarized in a 2013 review by Marelli et al. (102).

Bombesin is a 14-amino acid peptide that targets the G
protein-coupled receptor (GPCR) family, neuromedin B
(NMBR), and gastrin releasing peptide receptor (GRPR).
Bombesin receptors are upregulated in human tumor cell
membranes including breast, prostate, small-cell lung, and
pancreatic cancer and have been used to target imaging agents
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and cytotoxic drugs to tumors (4,103). Ming et al. attached
bombesin to the 5′ end of a splice-shifting oligonucleotide that
can repair a splice variant in luciferase-reporter cells. The
authors reported a 30-fold increase in luciferase mRNA and
a threefold increase in luciferase expression in PC3 prostate
cancer cells that could be removed by co-dosing free bombesin
(104). Recently, bombesin-conjugated polymersomes were
shown to effectively target PC-3 cells by FACS analysis, open-
ing the possibility to create polymersomes that can be dual
loaded with iron oxide and camptothecin for MRI imaging
and treatment (105). A bombesin analogue was also conjugat-
ed to liposomes to increase the targeting of doxorubicin. In
vitro analysis resulted in a twofold increase in the percent of
bound liposomes compared to nontargeted liposomes, and
in vivo tumor growth studies confirmed a 43% inhibition of
tumor growth compared to nontargeted liposomes at the 19th
day (106).

Somatostatin, also called somatotropin-release-inhibiting
factor (SRIF), was first discovered in 1973 by Roger
Guillemin’s group as a peptide that inhibited the secretion of
growth hormones in the pituitary gland (107). Somatostatin is
endogenously expressed in two forms; a 28-amino acid cyclic
peptide and a cleaved cyclic 14-amino acid peptide (108). The
ligand receptor interaction plays a role in controlling the
release of numerous compounds including growth hormone,
thyrotropin, prolactin, adrenocorticotropin, glucagon, vascu-
lar endothelial grown factor (VEGF; which induces nerve
growth factor), regulation of calcium currents, and the
adenylyl cyclase pathway via pertussis toxin sensitive G pro-
teins (109–113). Somatostatin’s inhibition of these processes
leads to antiangiogenic, apoptotic, and cell growth inhibition
effects.

While each of the five somatostatin receptor subtypes are
endogenously expressed in normal cells, they are each upreg-
ulated in a wide range of tumor and cancer cells (covered in a
review by Patel et al.) (114,115). This includes but is not
limited to: (a) neuroendocrine tumors and their metastases,
(b) hepatocellular cancer, (c) small-cell lung cancer and other
pulmonary malignancies, (d) breast, (e) stomach, (f) colon, (g)
rectal, (h) gastrointestinal, (i) pancreatic, (j) bone, and (k)
prostate cancer and almost all human meningiomas, medullo-
blastomas, and pheochromocytomas (116–126). Somatostatin
receptor (SSTR) upregulation in tumors and its natural apo-
ptotic and growth inhibitory effects make it a good target for
nanoparticle targeting cancer therapies. This upregulation led
to the treatment of tumors with somatostatin to slow tumor
growth and angiogenesis. However, while 73–77% of pa-
tients showed a biological response and tumor growth in-
hibition, it had little effect in extending survival length
(117). This was partially due to somatostatin’s short half-
life when dosed in vivo necessitating the design of new
somatostatin analogs and its use in conjunction with other
drugs (127). N-terminally modified somatostatin compounds
have proven successful in the imaging and diagnosis of
brain tumors by radioscintigraphy leading to numerous
clinically approved drugs such as Sandostatin® (Novartis),
OctreoTher (Novartis), and OctreoScan® (Mallinkrodt)
(128–130). Reviews of radio imaging peptides, including
somatostatin analogs, and isotopes used are available by
Reubi et al., Ferro-Flores et al., Schottelius et al., and
Eberle et al (103,131–133).

Somatostatin analogs have the ability to target a variety
of tumor types making these a viable option for combination
therapy with existing chemotherapeutics. Recent reports from
the literature indicate that somatostatin analogs have contin-
ued to be used in combination with paclitaxel and doxorubicin
(121,134). Targeted mixed micelles were loaded with doxoru-
bicin or a mixture of salinomycin and an antibiotic resulting in
tissue specificity and prolonged circulation leading to im-
proved antitumor effects (135,136). Liposomes conjugated to
somatostatin analogs have also been used in combination with
doxorubicin and tubulin-binding agents to achieve inhibition
of tumor growth (137,138).

While targeted nanoparticles show better toxicity pro-
files, somatostatin targeted nanoparticles are being developed
as gene delivery agents to further decrease the side effects.
Xiao et al. capped gold nanorods with octreotide in order to
deliver doxorubicin and siRNA to achaete-scute-complex-like
1 (ASCL-1). They reported that the combination of
octreotide, doxorubicin, and siRNA showed the largest anti-
proliferative effect and the largest gene silencing by immuno-
blot, especially compared to nontargeted controls (139). In
addition, adenoviral vectors that were modified to replace
the coat protein which binds to the CAR receptor with so-
matostatin were shown to efficiently target and express their
therapeutic gene in glioma cells. The increased targeting effi-
ciency allowed for low doses to achieve reporter gene expres-
sion 75 times that of untargeted viruses in vitro (140).

An extensive range of peptides exist to target other re-
ceptors as well. Cholecystokinin, a C-terminal (Gly-Trp-Met-
Asp-Phe) peptide, targets gastrin receptors (103,141).
Neurotensin, a 14-amino acid peptide, and its analogs that
are found in the ileum and hypothalamus can target the
neurotensin receptor in neural cells. It is also upregulated in
pancreatic and prostate cancer along with the melanocortin 1
receptor (MC1R), vasoactive intestinal polypeptide receptor 1
(VPAC-1), glucagon-like peptide-1 (GLP-1), and C-X-C che-
mokine receptor type 4 (CXCR4) (142–148). Another
targeting peptide, Ile-Thr-Asp-Gly-Glu-Ala-Thr-Asp-Ser-Gly
(ITDGEATDSG), has been shown to affect both psoriasis
experimental autoimmune encephalomyelitis and can target
lung carcinoma (149). The peptide Tyr-Ser-Ala-Try-Pro-Asp-
Ser-Val-Pro-Met-Met-Ser(YSAYPDSVPMMS) binds erythro-
poietin producing hepatocellular receptor (150).

In addition to the numerous peptide ligands discovered
for which the receptor is already known, technology such as
phage display and high-throughput screening (151) of peptide
libraries is leading to new peptides at a rapid rate of which
little characterization or binding information is known (152–
154). One example is the peptide Ser-Phe-Ser-Ile-Ile-His-Thr-
Pro-Ile-Leu-Pro-Leu-Gly-Gly-Cys (SFSIIHTPILPLGGC),
found using a phage display technique. This peptide targets
unknown receptors on HEP3B human carcinoma cell lines
(41). These examples suggest the extensive synthetic flexibility
of peptides and make them viable targeting ligands that need
to be studied further for more advanced cancer therapies.

CONCLUSIONS

Cancer is a very difficult disease to treat due to the
diversity of cancer types, progression, and patient variation.
Early forms of treatment with cytotoxic agents relied not only
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upon the propensity for drugs to act upon rapidly dividing
cancer cells but also led to normal tissue damage. The discov-
ery of cancer specific receptors has begun to increase the
effectiveness of cancer treatment using nanoparticles. Nano-
particles have the benefit of increasing circulatory half-life of
chemotherapeutic agents and limiting their toxicity. In the
same way, incorporation of ligands on nanoparticles increases
the accumulation of chemotherapeutics in cells creating a
safer treatment. Cancer-specific ligand-receptor pairings are
growing both in diversity as well as availability. Targeted
nanoparticles containing safer chemotherapeutic cargo, such
as siRNA or DNA, are proving efficacious in animal and
disease models. While cytotoxic chemotherapeutics are effec-
tive at destroying diseased cells, the future of cancer therapies
will rely on nanoparticles which are efficient at delivering a
safer cargo. These nanoparticles must combine an optimized
size, charge, and ligand presentation and also require the
discovery of new ligands that offer the ability not only to
target cancer but also to create individual treatments for dif-
ferent types of cancer to improve patient life expectancy.
Targeted nanoparticles will lead the way to decrease the toxic
side effects of current cancer treatments and to decrease the
number of cancer related deaths worldwide.
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